Reduction of Pertechnetate by Acetohydroxamic Acid: Formation of [Tc<sup>II</sup>(NO)(AHA)<sub>2</sub>(H<sub>2</sub>O)]<sup>+</sup> and Implications for the UREX Process
نویسندگان
چکیده
Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the X-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry and the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a d5 Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but it may be augmented by some products of the reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex ([Tc(NO)(AHA)2H2O], 1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent: potentiometric-spectrophotometric titration studies indicate a single species from pH 4 down to -0.6 (calculated). This molecule is resistant to oxidation by H2O2, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The potential formation of 1 during reprocessing may strongly impact the fate of technetium in the nuclear fuel cycle.
منابع مشابه
Facile Synthesis of Nickel Chromite Nanostructures by Hydrothermal Route for Photocatalytic Degradation of Acid Black 1 under Visible Light
NiCr2O4 normal spinel nanostructures were prepared via hydrothermal treatment at 180 °C for 12 h in the presence of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and poly vinylpyrrolidone-25000 (PVP-25000) as capping agents and subsequent calcination process at 500 °C for 3 h . In this method, [Ni(en)2(H2O)...
متن کاملPharmaceutical Wastewater Chemical Oxygen Demand Reduction: Electro-Fenton, UV-enhanced Electro-Fenton and Activated Sludge
In this study, Chemical Oxygen Demand (COD) from a pharmaceutical wastewater (PhW) was reduced by several techniques such as electro-Fenton (EF), photo electro-Fenton (PEF) and activated sludge (AS) processes and the obtained data were compared with each other. The effects of several parameters such as pH, current density, H2O2/Fe2+ molar ratio, volume ratio of ...
متن کاملX-Ray, Crystal Structure and Solution Phase Studies of a Polymeric SrII Compound
In the crystal structure of the title polymeric compound, [C42H38N6O33Sr5.2(H2O)]n, five independent metal atoms (Sr1-Sr5) have different coordination environments. The Sr1 and Sr5 atoms are nine coordinated and feature distorted tricapped trigonal-prismatic and capped square-antiprismatic geometries, respectively....
متن کاملBiomimetic TCF Bleaching of Pulp by Simple Inorganic Complexes of Cupric/Cobalt Acetate
Oxygen delignified kraft pulp from eucalyptus (E. urophylla × E. grandis) was catalytically pretreated in aerobic condition using ammonium persulfate in present of catalists like cupric acetate and/or cobalt acetate in acetic acid-water solution, i. e. S2O82--Cu2+, S2O8...
متن کاملSynthesis, Structure and Catalytic Performance of N4-Macrocycles of Fe III and Co II for Oxidation of Hydroquinone
Macrocycles and p-benzoquinones (p-BQ) have been generally connected as potential co-synergist redox models in aerobic oxidation. To get insight for the synergist oxidation of hydroquinones (H2Q), thus, we synthesized and characterized dibenzotetraaza [14]annulene type macrocycles of FeIII and CoII metal ions and described by utilizing different examinations inc...
متن کامل